Product Datasheet

SARTURIUS

Octet® SPR MAR Sensor Chip

Overview

Suitable for almost all Octet® SPR assays, the Octet® SPR MAR sensor chip is comprised of a 3D carboxymethylated dextran matrix sensor chip surface. Molecules of interest can be covalently bound to the surface using a range of different amine, aldehyde, thiol or carboxyl functional groups.

The Octet® SPR MAR sensor chip is one of the most widely used Octet® SPR sensor chips due to its versatility and high binding capacity, making it suitable for many diverse applications from small fragment research to large, complex molecular structures.

Learn More: www.sartorius.com/octet-spr

Information

- Upon arrival store Octet® SPR MAR sensor chips in the unopened package at the temperature indicated on the packaging.
- Octet® SPR MAR sensor chips are provided individually packed and are sealed in a nitrogen atmosphere.
 Therefore, it is recommended that sensor chips are used as soon as possible after opening the package.
- The Octet® SPR MAR sensor chip is supplied within a protective outer cassette that shields the chemistry from direct handling as any physical contact with the surface can adversely affect sensor chip performance.

Features and Benefits

Capacity and Surface

- High binding capacity
- Produces a highly stable covalent bond

Analytes and Ligands

- Biocompatible with a wide range of molecules
- Small molecules: fragments and organic compounds
- Large molecules and proteins
- Target interactions with low and high binding affinities

Sensor Chip Install/Uninstall

Prior to installation, move the sensor chip to room temperature and allow to equilibrate without opening the packet (~10 mins). Once equilibrated to room temperature the sensor chip is ready for installation.

- Open the sensor chip packet, ensuring that the sensor chip surface is not touched, as the surface chemistry on the sensor chip can be damaged if touched.
- Install the sensor chip as directed by the onscreen software prompts.
- For further information on sensor chip preparation refer to the <u>Best Practice Guide</u>: <u>Octet</u> <u>SPR Sensor Chip</u> <u>Preparation</u> and <u>Octet</u> <u>SPR Discovery User Guide</u> for additional information.

IMPORTANT: For best performance of the sensor chip, installation should be performed when the analysis chamber temperature is above 20 °C. Uninstallation should be performed when the analysis chamber temperature is below 30 °C. The control software will automatically enforce these constraints. After installation/uninstallation, the analysis temperature can be adjusted as desired.

Ligand Immobilization

Covalent immobilization to sensor chips is the most frequently used approach and is the method of choice for attaching affinity capture molecules, such as antibodies, protein A, protein G or protein A/G.

The Octet® MAR sensor chip is the basis for many different immobilization chemistries such as:

- Amine coupling—Carboxyl groups on the sensor chip surface are activated using EDC/NHS to generate reactive succinimide esters. Ligands containing primary amines are then injected over the activated surface to react with the ester and form a stable covalent bond.
- Thiol coupling—Thiol-disulfide exchange between thiol groups and active disulfides introduced on the ligand or sensor matrix. Thiol-maleimide coupling involves a similar scheme between thiol groups and maleimide groups on the ligand or sensor matrix.

Refer to Octet® SPR Chemistry User Guide for more information on different immobilization techniques and methods.

Ordering Information

Order No.	Description
19-0115	Pack of three sensor chips

Germany

Sartorius Lab Instruments GmbH & Co. KG Otto-Brenner-Straße 20 37079 Göttingen Phone +49 551 308 0

USA

Sartorius Corporation 565 Johnson Avenue Bohemia, NY 11716 Phone +1 631 254 4249 Toll-free +1 800 635 2906