# SVISCISVS

# Application Note

January 16, 2013

# Scale up With Sartobind STIC® PA Pico

## Miniaturized Scalable Format for Process Developers

#### Dr. Ricarda Busse, Dr. Miyako Hirai, Dr. Carsten Voss

Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany

#### Correspondence

E-Mail: ricarda.busse@sartorius.com, miyako.hirai@sartorius.com, carsten.voss@sartorius.com

## Introduction

Sartobind STIC<sup>®</sup> PA capsules with 4 mm bed height are disposable membrane chromatography devices for polishing of biomolecules in biotechnological production processes.

Sartobind<sup>®</sup> pico (0.08 mL bed volume) is the smallest format in the Sartobind<sup>®</sup> family. The pico has the same 4 mm bed height as the manufacturing scale capsules and scalability was tested through the following parameters:

- Protein binding
- Impurity removal (DNA, endotoxin, host cell protein, bacteriophages)
- Flow rate

The entire Sartobind STIC® PA capsule family is listed in the following table:

## Membrane volume (MV) and void volume of Sartobind STIC® PA 4 mm capsules

| Sartobind<br>STIC <sup>®</sup> PA<br>4 mm | Membrane<br>volume<br>[mL] | Nominal<br>void volume<br>[mL] | Nominal<br>void volume<br>[MV] |
|-------------------------------------------|----------------------------|--------------------------------|--------------------------------|
| pico*                                     | 0.08                       | 0.4                            | 5                              |
| nano                                      | 1                          | 3.5                            | 3.5                            |
| mini                                      | 10                         | 32                             | 3.2                            |
| 5"                                        | 75                         | 200                            | 2.7                            |
| 10"                                       | 200                        | 540                            | 2.7                            |
| 20"                                       | 400                        | 1,080                          | 2.7                            |
| 30"                                       | 600                        | 1,600                          | 2.7                            |
| Jumbo                                     | 2,500                      | 7,000                          | 2.8                            |
|                                           |                            |                                |                                |

\*Pico has a larger void volume compared to larger devices. After screening with pico, binding capacity and flow rate have to be determined with corresponding nano 1 mL capsules. The nano capsules support linear scale-up to larger devices.

## Summary

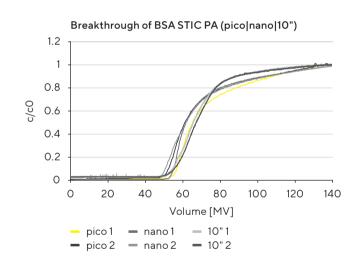
The aim of this study was to examine whether the Sartobind STIC<sup>®</sup> PA pico meets the requirements. All runs were performed with the same membrane lot. The results show that all application requirements are met.

### Results

Before testing binding capacities, devices were sanitized with 1 M NaOH for 30 min at 10 MV/min. Basic buffer was 150 mM NaCl 20 mM Tris/HCl pH 7.3 (+/- 0.1). After sanitization pH value was checked. The flow rate for all process steps was 10 MV/min. Lot: pico 201102D, nano 119803163, 10" 119803263



## 1. Binding of Bovine Serum Albumin (BSA)


#### Method

- 100 MV Equilibration
- 150 MV Load with BSA in buffer (1 mg/mL)
- 100 MV Wash
- 100 MV Elution with 1 M NaCl in buffer

Dynamic binding capacity at 10% breakthrough:

| Device | [mg/cm²] | Average [mg/cm²] | Average [mg/mL] |
|--------|----------|------------------|-----------------|
| pico 1 | 1.53     |                  |                 |
| pico 2 | 1.40     |                  |                 |
| pico 3 | 1.40     |                  |                 |
| pico 4 | 1.33     | 1.41             | 51.3            |
| nano 1 | 1.47     |                  |                 |
| nano 2 | 1.35     | 1.41             | 51.3            |
| 10"    | 1.42     |                  |                 |
| 10"    | 1.45     | 1.44             | 52.4            |
|        |          |                  |                 |

#### Breakthrough curves:



Comparable performance with larger devices

## 2. Binding of DNA

#### Method

- 100 MV Equilibration
- 150 MV Load with Salmon Sperm DNA in buffer (0.1 mg/mL)

Dynamic binding capacity at 10% breakthrough:

| Device | [mg/cm²] | Average [mg/cm²] | Average [mg/ml] |
|--------|----------|------------------|-----------------|
| pico 1 | 0.25     |                  |                 |
| pico 2 | 0.26     |                  |                 |
| pico 3 | 0.25     |                  |                 |
| pico 4 | 0.25     | 0.25             | 9.1             |
| nano 1 | 0.22     |                  |                 |
| nano 2 | 0.24     | 0.23             | 8.4             |

## 3. Endotoxin Removal

#### Method

Endotoxin: LONZA LPS E.coli

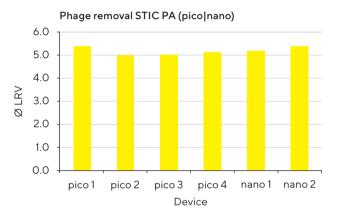
Lysate chromogenic: Charles River endosafe Endochrome-K ß-Glucan blocker: LONZA

- Additional cleaning procedure with NaOH to destroy present endotoxin in the system
- 200 MV Water
- 300 MV Equilibration
- 150 MV Load with Endotoxin in buffer (109 EU/mL)
- Sampling after 50, 100 and 150 MV

Determination of the Log Reduction Value:

| Volume<br>[MV] | pico 1 | pico 2 | pico 3 | pico 4 | nano 1 | nano 2 |
|----------------|--------|--------|--------|--------|--------|--------|
| 50             | > 3.96 | > 3.96 | 2.92   | > 3.96 | > 3.96 | > 3.96 |
| 100            | > 3.96 | > 3.96 | > 3.96 | > 3.96 | > 3.96 | > 3.96 |
| 150            | > 3.96 | > 3.96 | > 3.96 | > 3.96 | > 3.96 | > 3.96 |

Comparable performance with larger device


## 4. Phage Removal

#### Method

- 300 MV Equilibration
- 150 MV Load with Phage ΦX 174 in buffer (~ 1.5 × 10<sup>7</sup> PFU/mL)
- Sampling after 100 and 150 MV

Determination of the Log Reduction Value:

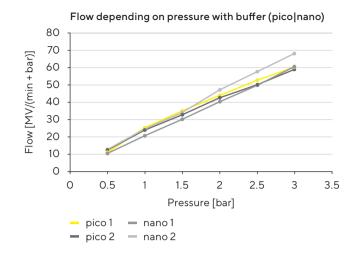
| Volume<br>[MV] | pico 1 | pico 2 | pico 3 | pico 4 | nano 1 | nano 2 |
|----------------|--------|--------|--------|--------|--------|--------|
| 100            | 5.4    | 5.1    | 5.1    | 5.3    | 5.2    | 5.5    |
| 150            | 5.5    | 4.9    | 4.8    | 5.1    | 5.3    | 5.3    |
| Average        | 5.4    | 5.0    | 5.0    | 5.2    | 5.3    | 5.4    |



Comparable performance of pico with nano device

## 5. Breakthrough Behavior With Host Cell Protein

#### Method


#### 100 MV Equilibration

• 100 MV Load with HCP diluted 1:50

#### Binding:

| Device | Dire dire er [res A.v. v. M/) /] | A       |
|--------|----------------------------------|---------|
| Device | Binding [mAu × MV]               | Average |
| pico 1 | 2262.00                          |         |
| pico 2 | 2711.00                          |         |
| pico 3 | 2636.00                          |         |
| pico 4 | 2652.00                          | 2565.25 |
| nano 1 | 2474.00                          |         |
| nano 2 | 2454.00                          | 2464.00 |

## 6. Flow Rate



Flow rate >10 MV/(min × bar)

#### Germany

#### USA

Sartorius Stedim Biotech GmbH August-Spindler-Strasse 11 37079 Goettingen Phone +49 551 308 0

For further contacts, visit www.sartorius.com

Sartorius Stedim North America Inc. 565 Johnson Avenue Bohemia, NY 11716 Toll-Free +1 800 368 7178

Specifications subject to change without notice. © 2021 Sartorius Stedim Biotech GmbH, August-Spindler-Strasse 11, 37079 Goettingen, Germany